بيست و هفتمين كردهمايـى فصلى كميتئ ملّى انرزیى راهكارهاى كاهش تلفات در شبكه هاى انتقال و توزيع برق

 اين در حالى است كه از آV ميليارد كيلووات ساعت تلفات شبكه

در ابتداى جلسه محمد حسن متولى زاده - قائم مقام شر كت
 برق در كشور، مصرف كلى اين حامل رابسيار بيش از از سطح بهينه آن دانست و كغت، براساس روند

 هوشمند، اصلاح لوازم سرمايشى (كولرهاى آبى و گازى) وا اصلاح
 در برنامه هاى آتى خود دارد.

سعيد مهذب ترابى - مدير عامل شر كت توزيع برق تهران

 انتخاب هاى مختلف به عنوان معيارى اقتصادى در نظر گرفته

 اما تلفات مقدار استانداردى ندارند. چحر اكه براى تلفات بايد مقدار
 نتيجه در نقاط مختلف جهان نمى توان مقدار بهينة يكسانى رابر ایى آن معرفى كرد. براين اساس تلفات براساس بيامدهاه
 به دو ديد گاه ملى و بنغًاهى تقسيم مى شود. اما از ديد گاه علّت بروز

 براى مثال تلفات غيرفنى تابعى از وضعيت اقتص اقنصادى و و معيشتى مردم است كه در نگاه كالان به ابعاد ملى باز میى گردد.
 تلفات بلكه تجديد آرايش شبكه بهصورت تابع بهينه دانست كا رانـ كاهش تلفات يكى از نتايج آن خواهلد بود. در اين راستا راستا، ارزيابى اقتصادى و اولويت بندى اجرايى اين طرح ها مطر مرح مى شو شود.

 بيشتر نشود. اين قانون تنها يك حالت استثناء خواهو داش داشت و آن بعد زمان به عنوان عامل محاود

 تلفات توان در ساعات بيک بار بسيار بيشتر از ساعات غيرييـ
 مى شود. در كشور ما ارزش هر كيلووات تلفات توان در ساعات

كه شامل تلفات شبكه انتقال، تلفات شبكئ فوق توزيع، تلفات شبكئ فشار متوسط و تلفات فشار ضعيف است، دو بخش شو شبكئ فشار متوسط و ضعيف در مجموع VA درصد تلفات شبكه را در بر

 تأمين برق در سطح فشار ضعيف كشور مورد بازبينى قرار گيرد.

 ساده، استفاده از ترانس هاى تو توزيع كم تلفا تلفات و و استغا

 كردن وسايل اندازه گيرى از دسترس مشتر كين انجام شده استا است.

 داشته است. اجراى طرح ملى كاهش تلفات انرزى تاكنون
 فوق توزيع و توزيع ؛صرفهج جويى معادل حدو

 اصالح و بهينهسازى سيستم روشنايى، رفع انشعاحبات ونيات غيرمجاز،

 اصلاح اتصال به زمين اجر اشده است كه طى آن دو يسشنهاد رفع اتصالات سست و اصلاح سيستم اتصال به زمين و رفع انشع انـابـات غيرمجاز با كمترين دورهٔ باز گشت سرمايه، جزه طر حها بودهاند. در نتيجئ اجر ای اين طرح هـا ها درصد تلفات در شبكه
|نجام شود.
وى مهم ترين ويزگ گی هاى شبكئ توزيع تهران بز گستردگى، قدمت و فرسودگى، توسعأ جزيرها باز كابلى در فشار متوسط و شعاعى در فشار ضعيف، تراكم بار بالا و اشغال بودن ظرفيت ها و امكانات و مخلدوش شدن اصل در درجئ اضطرار و ظرفيت ذخيره دانست كه با اجر ایى راه كارهاى گوناگون
 شركت در سال ITNV به رقم | الدرصد در حالت واقعى كاهش

يافته است.
سيد محمد صادقزاده -مدير كل دفتر بهبود بهرورى و اقتصاد برق و انرزى وزارت نيرو- روند شケ ساله عرضه، مصرف و و تلفات تبديل و انتقال برق در كشور را مورد ارزيابى قرار داد. در سال IrVD مصرف و تلفات تبديل، انتقال و
 ميليارد بشكه معادل نفت خام در سال مى رسيد، ميزان عرضئ انرزیى در كشور در حدود ميليارد بشكه معادل نفت خام بود كه ميزان توليد نزديى به دو بر برابر ميزان مصرف و تلفات انرزى در كشور بود. اما با افزايش حجم مصرف طى سال هاى پس از آن ميزان تلفات در بخشَ تبديل، انتقال و توزيع به شدت افزايش يافت تا جايى كه با وجود افزايش عرضه اما با ادامه روند فعلى تا تا
 و طى سال هاى پس از آن با افزايش ناگهانى مصرف، ديگر توليد
 بروز يكى بحران كمبود انرزى در كمتر از •ا سال آينده در كشور است و تنها راه مؤثر رفع اين بحران، توسعأ بهينه سازى انرزیى است.
 درصد و بازده سوخت به برق فروخته شده צY درصد بوده است. در شر ايط موجود با بازده צז درصدى برق برق فروخته شده نسبت به

بيكـ بيش از . . . ادلار ارزيابى مى شود.

 تلفات باردارى خطوط هوايى، كابل ها و ترانسفورماتورها، تلفات باردارى اتصالات، تلفات جريان هاى نشتى در برق گيرها،
 انشعابات غيرمجاز، دستكارى لوازم اندازه گيرى، خطاى قر ائت، عدم نصب به موقع كنتور و دقيق نبودن لوازم اندازه گيرى است. همحچنين تلفات مايريتى ناشى از تخصيص نامناسب بودجه، عدم خلاقيت و نو آورى و فقدان ريسک پذيرى تصميم گيران، وجود تأمين كنند گان غيراستاندارد و و فاقد صلاحيت، عدم تو جه به تأمين نرم افزارها و سخت افزارهاى مورد نياز و به كار گيرى
 بهرهبرداى و اجر ا است. در ادامه ترابى مهـم ترين راهكارهاى كاهش تلفات رادر سه بخش راهكارهاى فنى، بهبود راندمان تجهيزات و راهكارهاى حقوقى دانست كه در اين خصوص بـر به منظور اجراى راهكارهاى فنى لازم است اقداماتى همحچون، متعادل سازى بار فازها، متعادل سازى طول فيدرها، خازن گذارى و جابجايى پست هاى توزيع به مر اكز ثقل بار انجام شود. همـخنين بر ای بهبود راندمان تجهيزات اقدامات اجرايى به مراتب سادهتر و با هزينه كمترى قابل انجام است كه از آن جمله جايگزينى ترانسفورماتورهاى كم تلفات بانوع معمولى، استفاده از پشراغهایى پربازده مدنظر است. در خصوص راهكارهاى حقوقى نيز لازم است تا اقداماتى شامل تجمع انشعابات و واگذارى كنتورهاى حجمى (تجربه كشور كره)، جريمةٔ آلودهسازى هارمونيكى شبكه از سوى مشتر كان صنتتى (تجربه ايالات متحاه) و تخصيص ضريب زيان يا جريمهٔ پايين بودن ضريب توان (در اكثر كشورها)

انرزیى به ميزان 19 درصد (در نتيجه كاهش نياز به توليد)، امكان
 برابرىامنيت صنعت برق در مقابل حملات نظامى، افزايش
 و مصرف، كاهش آلودگى محيط زيستى و اشتغال زايى و گسترش دانش فنى و مهندسى در سطح صنايع داخلى كشور دانست. به
 در اولويت خود قرار دادهاند. كشور دانمار ك توانسته است با تغيير

 كه در صورتى كه اين سيستم رابه منظور مدل برتر در صنعت برق برق

 مدل از آن مورد استفاده قرار گرفته است. اولى نمونه سيستم توليد برق و حرارت همزمان در در سيستم آب شيرين كن

 است كه به عنوان پايلوت در ساختمان مر كزى وزارت نيرو نصب

شده است.
وزارت نيرو در راستاى استغاده از سيستمههاى توليد همزمان برق و حرارت، شر كت توانير را مكلّف كردهاست تا برق توليدى

 ساعت از مشتر كان خريدارى كند. همـحنیین مشتر كينى كه مولد

برخوردار مى شوند.

مسعود حجّت ـ مدير عامل شر كت مديريت شبكهٔ برق ايران در ادامه تلفات را ناشى از شرايط فنى و غيرفنى شبكه دانست كه ماهيت منحصر به فردى داشته و قابل مقايسه از يكى منطقه بامناطق ديگر نيست. ضريب بار شبكه يكى از مهمترين دلايل فنى تلفات

انرزی اولئّ تحويلى به نيرو گاهها و راندمان ها در درصدى بخش
 وواحح انرزى نهايى بعد از مصرف خواهيم داشتـ اما اما در صورت

 انجام است.

 حرارت و يا برودت •^-90 درصد راندمان فرآيند توليد تا تا توزيع
 مطلوب از هر اسا واحد سوخت تحويلى در مجموع 1 ریواحا

 . در چنين شرايطى در وضع مو جود كشور كشور به منظور توليد همين

 كه افزايش صعودى افزايش تلفات را با افزايش اندى تـا تداوم بار شبكه بيان مى كند. صادق زاده ديگر مزيت توليد همزمان پر اكنده رانياز بان بسيار پايين
 در شبكهٔ متمر كز، افزايش بازده سوخت درين دريافتى از •r در دصد به ده $90-$ V.

گردد. چچرا كه استفاده از يیى ضريب بار ثابت براى كل شبكه نمى تواند گويا باشد. همـحنّين بر طبق مطالعات انجام شده در شبكئ توزيع ايران به طور متوسط ضريب تلفات از ضريب بار بين هـاء• تا T• كم تر است و اين به معنى سهم قابل تو جه تلفات در بخش تر توزيع و بخصوص در پيكـ بار مصرف در كشور است. بنابراين سرمايه گذارى به منظور اصلاح منحنى بار بايد با بكار گيرى روش هاى مايريت مصرف وبا منابع توليد پٍ اكنده و از ديد گاه تأثير آن بر كاهش تلفات مورد توجه قرار گيرد. منحنى تلفات در كششور

 درصد در سال از آن با روند نزولى به رقم IV/AV درصد در سال 9^٪٪ كاهش يافته

اما براى رفع اين مشكل پهـ بايد كرد؟ براى برطرف كرن اين معضل بايل در مر حلئ نخست در برئش تلفات غيرفنى بر افزايش صحت دستگاه هاى اندازه گيرى بـه خصوص براى واحاههاى صنعتى و كاهش استفادئ غيرمجاز متمر كز شد. اين فعاليت ها زود بازده بوده وبا كمترين هزينه قابل انجام است. همحچنين برنامه ريزان شبكه هاى توزيع در تعيين ظرفيت و جايابى
 متوسط و ضعيف تلفات هر يك را مدنظر قرار دهند. تأمين تجهيزات با راندمان بالا و مشاركت
 ضرورى است. در اين خصوص واحاههاى كنترل كيفيت در
 دارند. بر ای نمونه ترانسفورماتورهاى جاريد بار انتقالى، به مر اتب عملكرد دبهترى نسبت به تر ترانسفور رماتور هاهى
مو.جود دارند.

اما نكته مهم در خصوص كاهش تلفات غيرفنى اَن است كه هر چند اين تلفات مى تواند در كوتاه مدت كاهش قابل ملاحظهاى

در شبكه هاى انتقال و توزيی است كه هر چه ضريب بار پايين تر باشد، تلفات بيشتر است. همـچنين درجئ حرارت محيط نيز با ضريب تلفات رابطءّ مستقيم دارد و براى يى جريان ثابت ميان ميزان تلفات در نيمه شب زمستان تا اواسط ظهر تابستان نزديك به ر با درصد اختلاف دارد. از ديگر موارد مهم فاصلئ دو مصرف كننده تا منبع توليد است كه با ميزان تلفات انتقال رابطئ مستقيم داشته و با افز ايش فاصله ميز ان تلفات افزايش مى يابد. وى همحچنين با اشاره به مهـمترين عوامل بروز تلفات فنى و غيرفنى شبكه، دليل اصلى تغاوت تلفات در شبكه برق كشور ما با ديگر كشورها را ناشى از دلايل غيرفنى همپچون نرخ شديد تصاعدى قيمت مشتر كين خانگى دانست كه سبب مى شود تا همه مصرف كنند كان از ما كنتو رهاى مجزا استفاده كنند و در يك شبكه فشار ضعيف همه مشتر ك شر كت باشند. در حالى كه در ديگر كشورها برق با ولتاز فوق توزيع تحويل برج هاى بزر گ مى شود كه علاوهبر حذ تلفات در شبكه فشار ضعيف، تلفات توزيع نيز به مصرف كننده منتقل مى شود. لذا كاهش تلفات
 برمبناى محاسبات فنى و مهندسى است كه طرح جامع اندازه گيرى روشنگر بسيارى از مسائل از جمله ابعاد مختلف تلفات شبكه خواهد بود. دكتر محمودرضا حقى فام ـعضو هيأت علمى دانشگاه تربيت

 و غير كارا از انرزى الكتريكى اطلاق مى شود و لازم است تا تلفات
 به اين كه در شبكه هاى فشار ضعيف تلفات به مر اتب بيشتر از شبكه هاى متو سط و انتقال است، بايل ضريب بار به صورت مستقل براى هر بخش از شبكه تعريف شودو براساس آن تلفات محاسبه

 بيش بينى مى شود تا سرمايه گذارى انجام شده طـى مدت الم الم سال باز گردد. همـچنين فراخوانى به منظور شناس

 مطالعئ استفاده از ترانسفورماتورهاى بهایینه به جا جاى ترانسفورماتورهاى متعارف نيز در دست اجر ااست كه تلفات رابه

 درصدى نسبت به قيمت تر انسفورماتورهاى متعارف نرخ خاز گا گشت
 زيست محيطى ناشى از كاهش تلفات، سالانه ن SOx كمتر توليد و منتشر خو اهد شد.

 حاصله مثبت بود و در ادامه اجراى اين طرح براى يى ميليون مشترك در سراسر كشور در مرحلئ مطالعه است. در اير اين مطالعه نتطه و شر ايط بهينة فنى و اقتصادى محل نصب خازن از از نتط؛
 مشخصات فنى و تلدوين دستور العمل نحوهُ كنترل و پايش عملكرد
بر رّسى مى شود.
 هوشمند است كه با هدف كاهش مصرف مشتر كين در زمان بيك مصرف، مديريت انزظى، كاهش تلفات غيرفنى شبكه، بر آورد تلفات فنى شبكه و برآورد كيفيت توان تحويلى

 فاز

داشته باشد، اما در بلندمدت در صورت عدم اجر ایى راهكارهاى

 و براساس حوزهههاى تأثير گذارى، استانداردها

 لازم است تاباهزينه بيش تر تجهيزات بار اند اندمان بهتر استفاده شود

 افزايش ضريب تلفات، استغاده از منابع توليد پر اكنده، استفاده اسره از پتانسيل اتوماسيون در كاهش تلفات و كاهش طول شـش شبكه هاى فشار ضعيف به مر حله اجرا در آيد.

حميدرضاصالحى -دبير و عضو هيأت مديره سنديكاى صنـعت

 پتانسيل بالايى نيز براى كاهش تلفات اين بخش و وجود دارد كه اين
 صالحى با بيشنهاد اصالح قيمت برق صرفه جهويى شده توسط صنايع
 امر را يكى از راهكارهاى اجر ايیى دانست. پشر ا كه بهينه سازى سيستمهاو كاهش تلفات در شبكه هاى انتقال و و توزيع به كاهش انـي توليد

را انرزیى پاك در نظر گفت.

صالحى ـ مديرعامل سازمان بهرهورى انرزّى ايران (سابا) ـ

